Rotational and Angular Variations in Pediatrics.

Matthew Ravish, DO, FAAP
Assistant Professor
Wake Forest School of Medicine, Dept. of Orthopaedic Surgery and Pediatrics
Brenner Children’s Hospital, Dept. of Pediatric Orthopaedics
Disclosures

• I have no relevant financial relationships with the manufacturer(s) of any commercial product(s) and/or provider(s) of commercial services discussed in this CME activity.
• I do not intend to discuss an unapproved/investigative use of a commercial product/device in my presentation.
Objectives

• Review the musculoskeletal exam when evaluating for rotational and angular variations.

• Discuss the diagnosis, natural history and treatment of common lower extremity rotational and angular variations.
Rotational Variations
Embryology/Development

• Limb bud development
 • 5th week

• Intrauterine positioning
 • Relative external rotation of hip
 • Internal rotation of tibia
 • Variable, flexible, positioning of feet
Development

• External Rotation During Growth
 • Femur ~25°
 • Tibia ~15°

• Adult alignment ~ 8-10 years of age
Evaluation

• Identify the concerns

 • Current appearance of the feet?

 • Function?

 • Persistence of the appearance?
Evaluation

• History – Onset, Function, Progression/Improvement

• Past Medical History
 • Birth history, Developmental milestones

• Family History
 • Rotational variations in family members
Exam

- Dynamic (Gait)
 - Foot progression angle (FPA)

- Static (Rotational Profile)
 - Heel bisector
 - Thigh foot angle
 - Hip rotation
Exam - Dynamic

Walk the hall

- Feet
- Knees
- Hips
- Other
 - Symmetry
 - Posturing with running
 - Hip/Knee flexion
Exam - Static

• General appearance
 • Facial features, asymmetry, maturity/development

• Lower extremities
 • Range of motion, Asymmetry

• Spine
Exam - Static

• Heel bisector
 • Line intersecting the midline of the hindfoot and forefoot
 • Neutral should pass through the 2nd metatarsal

• Shape of the foot
 • Convex border
Exam - Static

• Hip rotation

 • Internal rotation
 • Infant ~ 40° (10-60°)
 • Child ~ 50° (25-65°)

 • External rotation
 • Infant ~ 70° (45-90°)
 • Child ~ 45° (25-65°)
Exam - Static

- Thigh foot axis

 - Angle created between:
 - Long axis of the thigh and Axis of the tibia/hindfoot

 - Infant ~ -5° (-30 - +20°)
 - Child ~ +10° (-5° to +30°)
Prone Rotational Exam

Lay child on their stomach, flex knees, and rotate femurs internally and externally, keep pelvis level – this tests femur rotation
Prone Rotational Exam

Lay child on stomach, flex knees, and see how long axis of foot lines up with long axis of thigh – this tests for tibial torsion.
Differential Diagnosis

<table>
<thead>
<tr>
<th>In-toeing</th>
<th>Out-toeing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metatarsus Adductus</td>
<td>External tibial torsion</td>
</tr>
<tr>
<td>Internal tibial torsion</td>
<td>Femoral retroversion</td>
</tr>
<tr>
<td>Femoral anteversion</td>
<td>Pes planovalgus</td>
</tr>
<tr>
<td>Clubfoot (Talipes equinovarus)</td>
<td>Slipped capital femoral epiphysis</td>
</tr>
<tr>
<td>Skew foot</td>
<td>Painful limb</td>
</tr>
<tr>
<td>Spastic Hemiparesis</td>
<td></td>
</tr>
</tbody>
</table>
Metatarsus Adductus
Internal Tibial Torsion

• Common in-toeing etiology in toddlers

• 2/3 bilateral

• Parents report frequent tripping, clumsy

Average Toddler

• 2368 steps/hr

• 17 falls/hr

http://www.psych.nyu.edu/adolph/publications/Adolph%20EtAl%20HowDoYouLearnToWalk.pdf
Internal Tibial Torsion

• Treatment
 • Observation/Education
 • Tibia continues to externally rotate with growth
 • Bracing/Splints are NOT effective
 • Surgical intervention – Rare
Femoral Anteversion

• Common intoeing etiology of childhood
 • Peaks on average age 5

• Refers to angle between the axis of femoral feck and the condyles (M/L) knee

• Natural history
 • Infant ~40°
 • Adult ~ 15°

• Symmetric
Femoral Anteversion

- Report of “W” sitting
- “Eggbeater” running motion
- Knee caps point medially
- Excessive internal rotation relative to external rotation
Femoral Anteversion

- Treatment
 - Observation/Education

- Surgical
 - Severe anteversion
 - Functional limitations
 - After skeletal maturity
Out-toeing

• *Positive* foot progression angle
 • Unilateral or bilateral
 • Progressive vs Static

• Differential diagnosis
 • External tibial torsion, femoral retroversion, pes planovalgus
 • Slipped femoral capital epiphysis
Out-toeing

- Exam
 - Positive FPA
 - Hip range of motion
 - External rotation > Internal rotation (femoral retroversion)
 - Red flags (limp, decreased flexion, abduction, internal rotation)
 - Thigh foot angle
 - Foot/Ankle
 - Achilles contracture
Out toeing

• Identify the cause
 • Hip/Acute injury
 • External tibial torsion/Femoral retroversion
 • Pes planovalgus

• External tibial torsion may progress with age
Angular Variations

Genu varum and Genu valgum
Case #1

• 18 month boy is brought to clinic by his mother because of “bowed legs”. He is otherwise healthy. He began walking at age 13 months and is at the 50% mark for height and weight.
Exam

- Dynamic
 - Assess gait (walking age)

- Static
 - Standing and supine

Rotational and angular deformities often will present together
Differential Diagnosis

<table>
<thead>
<tr>
<th>Genu Varum</th>
<th>Genu Valgum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physiologic</td>
<td>Physiologic</td>
</tr>
<tr>
<td>Infantile tibia vara</td>
<td>Rickets/metabolic disorder</td>
</tr>
<tr>
<td>Rickets/metabolic disorder</td>
<td>Skeletal dysplasia</td>
</tr>
<tr>
<td>Skeletal dysplasia</td>
<td>Leg Length Discrepancy</td>
</tr>
<tr>
<td></td>
<td>Traumatic</td>
</tr>
</tbody>
</table>
Physiologic genu varum

Common first 2 yrs of life.

Generally no family history

Children with *normal growth*

Mild to moderate severity

Symmetric

Generally improves by age 2-3
Development of the tibiofemoral angle during growth

+ Varus
- Valgus

Varus
Valgus

Age, y

Extreme values

+34 ± 0
+21 - 13
+20 - 20
+13 - 19
+4 - 17
±0 - 11
±0 - 10
±0 - 14
±0 - 13
±0 - 12
±0 - 12
±0 - 11
Physiologic genu varum
Infantile Tibia Vara
"Infantile Blount’s disease"

• Proximal medial tibial physis fails to grow normally

• Depressed medial tibial condyle

• Usually bilateral
 • Unilateral bowing always red flag

• Tends to occur in early walkers, high weight-for-age infants
Treatment of Infantile Tibia Vara

Bracing
Children <2.5 years with early stage Blount’s
No clear evidence to support the use of bracing

Operative treatment
Osteotomies
Hemiepiphysiodesis – "Guided Growth"
Treatment of Infantile Tibia Varus

• “Guided Growth”
 • Plate & screws around the growth plate to slow down growth on the “long” (convex) side and let the “short” (concave) side catch up.
 • Plates removed once deformity corrected.
 • Minimal surgery
Treatment of Blount’s Disease: Hemiepiphysiodesis

Pre-op

17 months post-op
Case #2

3 y/o brought in by her grandmother for evaluation of “knock-knees”. Child has been growing at the 75th % for weight and length. Child is otherwise healthy
Physiologic Genu Valgum

“Knock-knees”

- Common after age 2
 - Peaks age 3-4
- Generally no family history
- Children with normal growth
- Symmetric
- Resolves by age 9-12
Physiologic genu valgum

• Treatment
 • Reassurance (resolves by age 9-12)
 • Bracing – no clear evidence
 • Hemiepiphysiodesis in persistent deformity
Other causes of genu varus/valgus

• When evaluating look for:

 • **Poor growth/short stature**
 • Asymmetric deformity
 • Family history
 • Dysmorphic features, signs of skeletal dysplasia
 • Risk factors for renal disease, nutritional deficiencies
 • History of LE trauma
Post-traumatic genu valgum

Partial injury to physis
Rickets

• May be nutritional (vitamin D deficiency)

• May be due to renal disease
 • X-linked hypophosphatemic rickets
References

